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Article [i] discusses the problem of the development of a rectilinear crack under the 
conditions of antiplane deformation with its arbitrary loading and an arbitrary law of the 
motion of its ends. The difficulty in the practical application of the solution obtained 
consists in the need for a consecutive calculation of all the wave diffractions running 
along the crack from one of its edges to the other. Under these circumstances, for large 
times (in comparison with the time of the passage of a wave over the length of the crack) it 
is practically impossible to find a solution. With this aspect, the best properties are 
those of self-similar solutions, obtained in the problem of the development of a rectilinear 
isolated crack from zero at a constant rate under the action of the corresponding load. Here 
the arbitrary law of the loading can be approximated [2] by the sum of self-similar loads. 
For the case of plane and axisymmetric deformation, several such self-similar problems have 
been solved [3-9]. In the present article, analogs of these problems for antiplane deforma- 
tion are considered as a partial case. The consideration of antiplane deformation is ex- 
plained, on the one hand, by the great mathematical simplicity of this case in comparison 
with plane deformation and, on the other hand, by the fact that many of the qualitative as- 
pects of the solutions in the cases of plane and antip!ane deformation are common. 

i. Self-similar Problems 

As is well known [I], with antiplane deformation, the sole component of the vector of 
the displacements differing fron zero is w, the displacement along the z axis. The function 
w(x; y, t) satisfies the wave equation 

a2~c $~U" i O!iC 

Ox ~ dg ~ b ~ ~t  2 , 

where b is the velocity of the transverse waves. The components of the stress tensor, dif- 
fering from zero, are expressed in terms of w in the following manner: 

(1.!) 

where ~ is the shear modulus. 

In what follows we shall seek solutions of individual problems, both for w and for its 
derivatives with respect to the time v n = ~(-n) w/~t(-n), n = --i, --2, ...~ and the first 
transformations of Vn, such that w = ~nvn/~tn , n = 0, i, 2, .... All the functions Vn(X , y, 
t) also satisfy the wave equation. 

Let us consider a class of self-similar solutions, consisting of solutions of the wave 
equation for Vn, representing homogeneous functions of the variables x, y, t of zero order. 
Such solutions are completely described by a class of functionally invariant Smirnov--Sobolev 
solutions [i0]. Thus, a given function Vn(X/bt , y/bt), satisfying the wave equation, can be 
represented in the form 

u ,~ (m/b t~  g ' b t )  = Re V,,(z)~ (1.2) 

where Vn(z) is an analytical function of the complex variable z, connected with the variables 
x, y, t by the relationship 
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5 ~ t - - z x - - g ] / b  - 2 - z  2 : O. 

We give here formulas for replacement of the variables with differentiation: 

a ~ ,~ 5 z o c) ] ~b - 2  - -  ".."- 5 c35 
- -  6' -- = - - .  ( 1 . 3 )  

a - - [ ' - ~ - - ~ T ] "  az 6" az oy 6" O:'  oz 

In particular, z = t/x, ~' : - - x  with y : 0. 

Relatlonship (1.2) allows us to reduce the problem for a wave equation to the problem 
of finding the analytical function Vn(z). Here the initial and boundary conditions of the 
problem for the wave equation must go over into the boundary conditions for finding Vn(z). 

Using the connection between Vn(X/bt , y/bt) and the displacement w(x, t, t) and formu- 
las (i.i), the result can be obtained that the components of the stress tensor have the form 

"[~.: = ~c o ( to. , )  "[~, (x. ot ,  g /b t ) .  

In accordance with this, we consider the problem of the expansion of a crack from zero at a 
constant rate v; the sides of the crack are loaded by the shear stress 

~;~: .  t )  = ~ r o t t o  t )  ' " - - 1 . ! ( : , : b O ,  . ( l .4) 

where ~(s) is an arbitrary $ntegrable function; x is the coordinate along the line of the 
crack. 

The simplest solution is obtained with n = 0. In this case, the solution reduces to 
finding the function Vo(z~), z~ : i/bz, whose real part is the displacement 

u' (x 'b t ,  y 'b t )  = .  t / e~  o,~z,. 

As is well known [i0], the upper half-plane of the plane z~ : x~ + iy~ corresponds in 
�9 . �9 . 2 2 ~ 2 ~ 

the physzcal plane to the znterior of the semzcircle x + y -~b t . Here the segment of the 
axis yl = 0, ]xll < v/b,corresponds to the cut x < vt; v/b < xl] < i, to the sections of 
the x axis from the tip of the cut to the wave; x~ I > i corresponds to the wave x 2 + ya : 
bat a, y>0. An infinitely removed point in the plane z~ corresponds to the physical point 

of the wave x : 0, y : bt. 

Let us write the boundary conditions of the problem under discussion at the x~ axis, the 
plane z~. With y~ : 0, Ix~l < v/b, there is given ry z = -Totof(x~)/t. Using (1.1)-(1.3) and 
the condition y = 0 in this interval, we obtain 

R e  Vo l ; b  - 2  - -  z ~ ="  R e  M o = %t, )bx l f  (xJ , , ' t t .  

Here and in what follows a prime denotes differentiation with respect to the complex variable 
z. With yl = 0, v/b < Ix:l < i, the displacements w(x/bt, 0) are equal to zero, i.e., Re 
Vo(x,) = 0 With y~ = 0, Ix~l >I, w = 0 as a consequence of the zero initial data of the prob- 
lem, from which it follows that, in this section also~ Re Vo(xl) = 0. 

For the function Mo(z,) = V~/b '-a -- ~a we have the following boundary conditions with 

y~ = 0: 

R e M o  = xotoxlb/(x~)~t w i ~  ixrl < ~'t. 

h n M o  = 0 wi th  z , b  < [x11 < 1, (1.5) 

ReMo : 0 wi~ la I>~ 1, t .  

For an unambiguous determination of the analytical function Mo(z~) from the boundary 
conditions (1.5), the character of the behavior of the sought function must be determined at 
the points zl = 0, =, !v/b, • starting from the physical statement of the problem. 

574 



i. The point z~ = 0, z = =, corresponds to the middle of the crack. We postulate the 
boundedness of the displacement at this point Vo ~ ao + a:/z + ... (ao, a~, ... are arbitrary 
real numbers). From this V~ ~ i/z 2, Mo ~ i/z ~ iz~. 

2. The point z~ = =, z = 0 corresponds to the point of the wave x = 0, y = bt. Since 
ReVo(z~) = 0 on both sides of the point z = 0 with Re z = 0, for reasons of symmetry Vo(z:) 
can be prolonged continuously beyond the real axis to the right and left of z = 0. This 
means that the point z = 0 cannot be a branch point of the function Vo(zx). The Laurent ex- 
pansion at this point has the form 

The absence of terms with negative powers is explained, on the one hand, by the fact 
that there is no reason to expect a special behavior of the solution at this point of the 
wave in comparison with other points of the wave, and, on the other hand, by the fact that 
the appearance of such terms would mean the loading of this point by some external action. 
It can be shown that the function Vo = 2Q/i~bz is a solution of the problem of the elastic 
field of the ant• displacements, arising in a plane when it is loaded by pairs of con- 
centrated forces • running along the y axis with the velocity b. As a result, with z: § =, 
we have Mo(z:) ~ i. 

3. With z~ = !v/b, which corresponds to the tips of the crack, we shall assume, with 
M~(z:), the presence of a root singularity (z: -- va/bU) -~/;, since, in the present problem, 
the value of Re Mo(z~) is proportional to Ty z. 

4. The points z~ = • correspond to points of the wave at the x axis. Analogously to 
the case zx = ~, it can be shown that these points cannot be branch points for Vo(z:), while 
the presence of the terms (z -- b-) -m, m > 0, in the Laurent expansion with z § b -~ would 
mean the additional concentrated loading of this point. From this, at this point, we postu- 
late the following form of the expansion: Vo(z~) ~ i[ao + a:(z -- b -~) + .... ], from which it 
follows that, with zt § • Mo ~ "z~~-- I. The function Mo(zx), satisfying the boundary con- 
ditions (1.5) and having the required behavior at the points zt = 0, =, • • is singu- 
lar: 

3 I o  ( zO  = 
to%hi (s) s'-' --  v21b "z ds. 

l / -  :7 - ,> - l 

We give an expression for the coefficient of the intensity of the stresses. If the 
stresses near the tip of the crack have the asymptotic ry z ~N//~x~, then 

v/b 
.u  = "rotob ] / 1  - -  r2.'b ~ 

a Vg~-~t ( V v / b - - z  l ( z )d z  
t '  

--v!b 

(1.6) 

From this, with y(x) = i, which corresponds to a constant loading along the crack x(x, t) = 
Toto/t, it follows that 

N 2N~  V I -  " ~' = o'/b ,~ ,  

where N o = roto(v/2t) :/a is the value of the coefficient of the intensity for the static 
problem of the uniform loading of a crack with a length 2vt by a load Toto/t; K(v/b) is a 
total elliptical integral of the first kind. 

With f(x) =Q61(x)/robto, which corresponds to loading by a constant force, from (1.6) 
it follows that 

_v = x o  l / 1  - v - ' bL  mo = Q , ' .  V 2 - ~ - ,  (1.7) 
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where N o is the value of the coefficient of the intensity for the static problem of a crack 
with a length of 2vt, loaded by shear forces • The components of the stress tensor ~yz in 
this case in the interval vt < x < bt are determined by the expression 

"ruz = Qv ]/b"-t"- 3: ~ a b x  ] / - x  ~ ' o- ' t  ='. (1.8) 

The case n = i in (1.4) is investigated analogously to the preceding [ii]. Here the 
coefficient of the intensity is determined by the expression 

.V  = 
"~,~,'ol :-t 2 "?  

~t  ~ |  1 - - : ' 2  b'-" '" 
- - i ' 0  

i(,~)'~ s - - t "  b ' ~ / 1 - - s " - d ,  % 

] v b - - I  

From (1.9), for a uniformly distributed load, follows 

(1 .9)  

x~,c, t)  = % ( t o  t )~6G(l  u" ~'l ',). 

- _ o , ,  yo - 1 , , ' ~ 9 .  .V  =_  2 . V ~  b)  a 1 I L'-, b - ,  - -  % i t o  t)'-" _ ,  

for a concentrated load 

�9 b' .  t) - Q to6~(x ) t .  

N = N ~ ] ' t  v"-b ~. N ~ = Qto .~ t  l / ' 2 . t .  

In the latter case, z.., in the interval between the tip of the crack and the wave at the 

axis y = 0, is determined by the expression 

�9 u, ---. Qtov/::b"-t~-xx l/.'..'~ v'-,;b 2 ] /  1 3.'f. ( l . l O )  

For a value of n~>2, it is not possible to construct a solution satisfying the boundary 
conditions and the required behavior at the points Z1 = 0, =, !v/b, • determined analogously 

to what was done for n = O, i. 

To understand the reason for this, let us find the dipole moment D of the loading forces 
for the partial case of loading by a constant stress z = To(to/t) n+x along the length of the 
crack. Such a dipole moment is proportional to zvat a. Thus, for n = 0, D ~ t. For n = I, 
D ~ const, which corresponds to the problem of the inclusion of the dipole at the origin of 
coordinates at the zero moment of time. In the case n = 2, D ~ t-*. Such a loading leads to 
infinite displacements, analogously to loading by the half-plane force Q(t) (the Lamb prob- 

lem), not integrable at the initial moment of time. 

Let us now investigated the case n~--i (n = k-- i; k = O, --i, --2, ...). With such a 

loading law 

v,~(x/bt ,  g 'bt )  = ReV, : (z0  = 01-k[t;,'Ot ( l - h )  

b(~--h)~vzlOt(i--h) = ~t Re V~ }f6:7-~ - -  z'Zi'6 ' = ~t Re M n / 6 ' .  

From this, with Ixl] < v/b, yz = 0; when the external load is given (1.4), we have Re 
Mn = (xZ~)3il-k]r(x, t)/3t (l-k). For v/b < ]xl] < i, w = 0, ~(:-k)w/~t (x-k) = 0, Re V n = 0, 

Im M n = 0. With I xxl > i, Re V n = 0, Re M n = 0. 

Let us evaluate the character of the behavior of the functions Mn(z:) at the points 
z = 0, +v/b, +i, =, with the conditions y(xz) = y(--xl) in (1.4): 
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for z 1 = o o ,  l',~ ~ i(aaz-~- azz :~-:- �9 . .). J[ ,~ ~ i; 

[ 2 , ' ,/~o'~--(3--2/:), 2, 
for Z t : :  • t ' /b ,  ~ ] [ r~ ' -~ \Z l - - v -*~  

for z l = _ _ _ l ,  V , , ~ i [ a o ~ - a t ( z : .  b - ~ ) - : - . . . ] ,  M,~ 

The function satisfying all these requirements has the form 

,t lle .1/ (s: r t  b" - ) (3- ' i ' J :12ds ] 
=~ -- ~ ,~zj j. (i.Ii) 

_'~... ~, 

where A m (m = 0, i, ,.., Ikl) are undetermined constants, which must be found by establishing 
the values of ~P~ z/~tn(p = 0 , Ikl) with respect to M n at the sides of the crack, and y ' ,', 

requiring the satisfaction of the corresponding boundary condition at some point of the crack, 
for example, x = vt - 0, y = 0. Under these circumstances, a linear system of equations is 
obtained with respect to Am: 

v -I --0 

,?(--h--P) ? 
o~ 'L ,  ~. ._ ~;~T (~'t, ti : :  ,u . B.e t ( v - :  - -  t ) - " ~ - ~ 3 4 d l t ,  ( t  . 1 2 )  

8t~J #t~, (-- k -  p)! ~--I 

whose solution completes the construction of the function Mn(zx) (i.Ii). 

We give expressions for the coefficients of the intensity with uniformly distributed and 
concentrated stresses, found by the procedure described above with k = 0: 

= % 6 0 ( 1  - -  !.T v t  3 .  

A- -- 3"~ ' 1 - -  u"- b"- E ( [ / ' l  - -  u 2 b:), .V ~ = % | / v t  2: 

N - -  N ~  - -  V-' b~[I  - - u 2 K ( | / - 1  - -  u ~ b 2) b ~ E ( | / - I  - t "2 b ~ ) l , 3 - ~  

(i.z3) 

(1,14) 

An analog of the latter problem for plane deformation is discussed in [7], but, there, in the 
solution a term is omitted containing an undetermined constant and having the sense of a so- 
lution with loading of the sides of the crack by a constant stress (the Broberg problem). 
Thus, the solution found in [7] corresponds to a combination of a concentrated and some uni- 
form stress. 

With an increase in the value of Ik], it becomes difficult to obtain analytical depen- 
dences similar to (1.13), (1.14), and it obviously will be more realistic to use a numerical 
method for obtaining and solving the system (1.12) for A~. From the solutions of the inves- 
tigated self-similar problems of the theory of the elasticity of the dynamic loading of a crack 
growing with a rate v it follows that, with v/b<<l, the coefficient of the intensity of the 
stress is close to its "quasistatistlc" value N~ determined from a solution of the static 
problem, The correction factor to the quasistatistic value of N/N ~ in the cases under dis- 
cussion depends essentially on the law of the loading (1.4) and can be either less or great- 
er than unity. 

2. Concentrated Loading 

The following problem is considered. From the origin of coordinates x = y = 0, in an 
elastic plane at rest at the initial moment of time, a crack Ixl < vt, y = 0 starts to devel- 
op itself to the right and left at a constant rate v. The sides of the crack are loaded by 
a concentrated force, 

�9 (x, t) = ~ f ( t )61(x )5o( t ) ,  ( 2 .  i )  

a c t i n g  a l o n g  t h e  z a x i s .  H e r e  T ( x ,  t )  i s  t h e  s t r e s s  o f  t h e  l o a d i n g ;  ~ ( x )  i s  a D i r a c  d e l t a -  
f u n c t i o n ;  6 o ( t )  i s  a H e a v i s i d e . f u n c t i o n ;  i f ( t )  i s  a f u n c t i o n ,  d e t e r m i n i n g  t h e  c h a n g e  i n  t h e  
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forces with time; the sign + and -- relate to the upper and lower sides of the crack. It is 
required to determine the stress~intensity coefficient at ~he ends of the crack. 

In [2] it is proposed to approximate an arbitrary loading law of the type (2.1) by a 
power series with respect to t: 

This approach makes it possible to bring the solution of the problem posed down to the 
solution of self-similar problems of the loading of a similar crack by the load 

~(x,  t) = + l i S ~ ( x ) 5 o ( t ) ,  ~ - -  O, t ,  2 . . . . .  ( 2 . 2 )  

Under these circumstances, the solution for the problem (2.1) is obtained as a linear combi- 
nation of solutions with the loading (2.2), and the stress-intensity coefficient at the crack 
tip is found in the form of a series 

~\- (t) = ~ aiN~ (t), ( 2 . 3 )  
i=o 

where Ni(t) is the stress-intensity coefficient in a self-similar problem with the load (2.2). 

A problem with the load (2.2) is a partial case of the self-similar problems discussed 
in Sec. i, which gives analytical expressions for N i with i = 0 (1.7) and i = i (1.14). With 
i > i, we find the values of N i numerically solving the self-similar problem with a load 
(2.2) by reducing it to an integral Fredholm equation with respect to an unknown component of 
the stress tensor Ty z with y = 0. For comparison of this equation with respect to Ty z (x, O, 
t) with vt < Ixl < bt we use the result of [i]. 

The stress at the point (xo, 0) at the continuation of a semiinfinite moving and arbi- 
trarily loaded crack x < l(t), y = 0 in an originally quiescent plane at the moment of time 
to is determined by the expression 

i p ( x ,  t o - -  x o 6 -  x ) .  ! x~ - -  x d x ,  ( 2 . 4 )  
"r~ (Xo, to) ~ t':,o ~1 , : . - to - -  ~ X 0 - -  X 

where xx is the coordinate of the point of intersection of the characteristic passing through 
the point (xo, to) and the trajectory of the end of the crack in the plane (x, t); p(x, t) is 
the loading of the sides of the crack, given with x < l(t). 

In the plane (x, t), the problem under consideration has the configuration shown in Fig. 
i. The characteristics I and I' separate the regions of rest from the region of motion. The 
trajectories of the ends of the crack are illustrated by the straight lines II and II'. Be- 

tween them there is a region where the load p(x,t) is given by formula (2.2). 
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TABLE i 

i v=0,2 v=0.~ v=0.6 v=0,8 

0 
1 
2 
3 
4 
5" 
6 
7 
8 

9 

0,225 403 
0A42 952 
0,902 05 �9 f0- :  
0,568 226. t 0 - :  
0,358 242.10- :  
0,226 381. I0 -~ 
0,143 4S7. i0 -1 
0,912 4 .10 -z 
0,582 0 .tO -~ 

0,372 4 . t 0  -~ 

0 , t63 340 
0,630 221.10-:  
0,241 791. iO -~ 
0,937 153 . t0 - :  
0,367 9I .iO -z 
0 , i46 107.10 -~ 
0,585 757. I0 -a 
0,236 64 .10 -~ 
0,96i 9 -10 -~ 

0,393 0 .10 -~ 

0 , t05 573 
0,223 557.10-:  
0,480 846. I0 -~ 
OAO6 459-10 -~ 
0,241 062.10 -a 
0,554 745. iO -~ 
0,129 177. t0  -~ 
0,303 47 �9 10-~ 
0,7i7 9 0 . 1 0  -~ 

0,170 77 �9 10 -~ 

0,513 i67. lO-: 
0,453 999.10 -~ 
0,424 334. t0 -~ 
0,414 002.10 - t  
0 ,4 t4  889. I0-~ 
0,423 2 t i .  I0 -~ 
0,437 142. !0 -~ 
0,455 760. lO -s 
0,478 61 .tO -~ 

0,505 49 . t0  -*0 

Assuming the stresses with x < vt to be given, from (2.4) we obtain an integral equation 
for ~yz. Here the integration in (2.4) is carried out along the characteristic 0 (see Fig. 
i) in the intervals (xa, x~), where the load p(x, t) = ~(x, t) is given from (2.2) and 
(xsx=), where the load p(x, t) =-~yz(X, t) is unknown. 

As a consequence of the self-similarity of the problem with the load (2.2), the stresses 
and ~yz are represented in the form 

= -  ti-16:(x't), zu= = "  ti-:(~i(x t). (2.5) 

Substituting (2.5) into Eq. (2.4) and going over to the variable ~ = x/t, we obtain an 
integral equation with respect to @i(~): 

%(.:o) [ ;o , ~m I J" %(~____~) {i:, ~ )~/2d~ , I ] / r - : -  
l - ~  T ~ o  " V ~ "  

Using the symmetry of the problem Pi(~) = @i('-~) and introducing the new unknown function 

for ui(~) we obtain the equation 

(2.6) 

i 

u i ( ~ ~  ? ,, r  ~-L-":--v/ d ~ + - ~ "  o" ( 2 . 7 )  
' lJ  

With i~--l, this equation belongs to the class of Fredholm equations. 

For i = --I, 0, the solution of (2.7) is the function 

These solutions coincide with (I.i0), (1.8). 

For i > i, Eq. (2.7) was solved numerically, after bringing it to the following form by 
a replacement of the variable of the integration, so chosen as to get rid of the root singu- 
larities, 

I 

�9 f u(s).[cos(ml2)12i+2l/V+Sdt + t 
u, (z)  = - -  (1 - -  vY+~. ~ + .~ (t + ~ ) ~ ' ~  "V' 

o (2.8) 

S = V - -  ( t  v) s i n  2 ( a t / 2 ) .  
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The integral in (2.8) is represented in the form of a quadrature formula of the Gauss type, 
with fixed extreme points [12]: 

! 

(i(:~)u=~A!(" i ) -  B ! (1 ) -  ~ c j  (x,;), 

where the order of r is taken equal to 15. The system of linear algebraic equations, obtained 
from (2.8) for the values of u i at the points of the quadrature formula Xk, was solved using 
a standard program. 

A comparison between the numerical solution obtained in this manner and an analytical 
solutionwith i = 0, v = 0.4 showed that the relative error in this case does not exceed 
10 -7 " 

For large values of i and small values of (i -- v), from Eq. (2.8) it follows that 

zinC:c) ~ 1 m .  (2 .9)  

This was confirmed by a numerical calculation. Thus, already with v = 0.4, i = i, the maxi- 
mal deviation from the asymptotic (2.9) was 1.5% and with a rise in i it decreased very rap- 
idly. To increase the accuracy of the calculations with large values of i, ah equation for 
the function wi(x) = i/x -- Ul(X), easily obtained from (2.8), was computed numerically. The 
accuracy was controlled by comparison with a solution found with the use of a quadrature for- 
mula of the 10-th order. 

Table 1 gives values of vwi(v), calculated for the case v = 0.2, 0.4, 0.6, 0.8 wlth 0~ 
i~9. 

Using the value of vwi(v) , we can find the coefficient of the intensity of the stresses 
with a singularity at the tip of the crack in the problem (2.2). From (2.5), (2.6), it fol- 
lows that 

3"~ = t~-','~ ( i -  v)~+l!~[i - -  vu'tv)] a ]  r ~  (2.1o) 

With large values of i and v, from (2.9), (2.10) it follows that 

We now construct the solution of the problem with the load (2.1), whose function ~(t), 

in the interval 0 < t < =, can be represented by a Taylor series ~(t) = ~aS. In accor- 

dance with (2.3), (2,10), the stress-lntensity coefficient with such a stress of the crack 
sides is expressed by the formula 
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oo 

~ a i w  i (u)  s ~ N ( t ) = l  l - - v  / ( s ) - - v . _  
, i = O  

s =  t ( i  - -  ~,), 

/~ V~, (2.11) 
I 

which, with v § i, has an asymptotic form 

X ( t )  , ~  N l ( t )  - -  ] / - I  - -  v / [ t ( t  v)]  ~ V v T .  (2.12) 

We note that the convergence of the series in expression (2.11) is better than that of 
the series for ~(t), since the factor wi(v) decreases rapidly with a rise in i. 

This makes it possible, with a given cut-off of the series for ~(t), using formula 
(2.11), to obtain N(t) with a value of t greater than is permissible from the condition of 
the approximation of f(t) by the given cut-off of the series. 

As a first example, let us consider the law of change of the forces of the stress with 
t~e: 

m 

/(t)=e '~(--t/'i! (2.13) 
i = 0  

The error with calculation of N using formula (2.11) with t = 16.7, v = 0.4, m = 16, is I0 -~, 
while for the series (2.13) with m = 15 an error of the same order of magnitude is attained 
with t = 3.4. 

Figure 2 shows dependences of N, N/N ~ , N/N* (curves 1-3 respectively) for the case v = 
O 

0.4 with m = 16. For N (t), there is taken here the value of the coefficient of the intensity 
which is obtained with solution of the problem of the loading of a crack with a length 2vt by 
the forces f(t): 

X~ == i(0 a }  2ut. (2.14) 

The dependence N:(t) is determined by formula (2.12). 

Qualitatively, the behavior of N(t) with t > 4.5 in this case can be described in the 
following manner: a transition through 0 with t = 4.96, a decrease to --I0 -s with t = 6.67, 
and then a slow rise to --2 �9 I0 -~ with t = 16.7. 

O I The form of the dependences of N/N and N/N shows that for v = 0.4, N(t) differs strong- 
!y from both N and N . The analogous dependences for v = 0.2 and v = 0.8 showed that with 
small velocities N(t) can be well (10%) approximated by N~ and, with high velocities, by 
N~(t) in the interval 0 < t < 3. With t > 3, a characteristic feature for N with v = 0.2, 
0.4, 0.6, 0.8 is a transition through 0 at the moment of time 5.15, 4.95, 7.15, and 20, re- 
spectively. 

Let us consider the case f(t) = sin ~t, 0 < t < i. This function was approximated by 
3 

the cutoff of the series sin ~t ~(--~t)2i+I/(2g+1)!. The results of calculations using 
i=0 
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formula (2.11) with v = 0.2, 0.4, 0.6 are shown on Figs. 3-5, where curves 1-3 correspond to 
the dependences N(t), N~ and N~(t); it is evident that, with a decrease in v, the curves 
of N and N o approach each other; with an increase, the curves of N and N ~ approach each other. 
With middle values of v, neither of these approximations is effective. 

We note also that, as in the case of a power law, N(t) reverts to zero, then passes 
over to negative values. 

For calculation of the dependence N(t) in the case of an arbitrary change in the forces 
~(t), representing, in the interval 0 < t < i, a limited function at L2, we can use (to ob- 
tain a polynomial approximation of such a law) an expansion in terms of shifted Legendre 
polynomials P~ [13]: 

1 

/ (t) ~ --~7 b,~P;,. ,,5~ = (21~ 1) ~, P~, (t) .f (t) d t .  
n=O 0 

(2.15) 

Representing the integral in (2.15) by a quadrature Gauss formula of order m = r + i, 
and using (2.11), we obtain an expression for calculating N(t): 

. T  ( t i )  ~ .  " - -  _ .  / ( : ' : i )  (5~ -' mi~), 
"~] c~"i i~.-,J ( 2 . 1 6 )  

x~ - (l L')t~, i --- 1 ,  2 . . . . .  m ,  

where x i are points of the quadrature formula [12]. The matrix mlk is expressed in terms of 
the weights of the Gauss formula A k [12] the coefficients pi with the powers t i of the poly- 

' n 
! 

nomials P~ [13], and the values Phi of the polynomials Pn at the points xi, 

r vA~ ~ ~ 
m i ~ = ~ . ~ z i . ~ W s ( V ) (  Xi) s ~ ( 2 n + l )  P ~ P ~ .  ( 2 . 1 7 )  

As an example of the use of formulas (2.16), (2.17) (r = 9), calculations were made of the 
cases considered above, f(t) = e -t and f(t) = sin ~t. The results are plotted by the points 
in Figs. 2-5. It can be seen that the agreement is completely satisfactory. 

For an evaluation of the accuracy of formulas (2.16), (2.17) (r = 9), we consider a load- 
ing law which allows an explicit solution using formula (2.4), 

/(t)  = 5o(t)6o(O.5--t),  0 < t < t .  

With such a loading, for 0 < t < 0.5/(1-- v), the values of N and rvz are determined by 

expressions (1.7), (1.8). Using them, with t > 0.5/(1 -- v)/N(t) can be found by numerical 
integration. Here while in the interval 0.5/(1 v) < t < 0.5(1 + v)/(l -- v) = we must take 
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account of a single integral, with 0.5(1 + v)/(l -- v) ~ < t < 0.5(1 + v)2/(l -- v) 3 we must 
take account of a double integral, and so forth. 

Curves i, 2 in Fig. 6 show dependences N(t), obtained in this manner with v = 0.2 and 
0.4. The points plot values of N(t) found for the given loading law using formulas (2.16) 
and (2.17). It can be seen that the coincidence of the results is completely satisfactory. 

Formula (2.16) makes it possible to solve the inverse problem: From a given N(t) 
find f(t), in particular the following "optimal" problem. 

Let the minimal value of N with which the crack can move at a constant rate v without 
stopping be K = const. With what loading law f(t) will the coefficient of the singularity 
at the crack tip be equal to K during the whole time of the motion? Inversion of (2.16) al- 
lows us to construct suoh a law. In Fig. 7 the solid curves 1-4 show dependences of ~(t)/K 
with v = 0.2, 0.4, 0.6, 0.8 found from the system (2.16) with a constant left-hand part equal 
to K. 

An approximate solution of this problem can be obtained, assuming that N = N~(t) (2.12). 
With such an approximation 

!(t)~K ~ ~V~(~ - ~) (2.18) 

The dependences (2.18) with v = 0.4, 0.6, 0.8 are shown in Fig. 7 by curves 2'-4'~ 

From a comparison between the exact and approximate solutions it can be seen that, for 
the given problem, the approximate solution (2.18) is in satisfactory agreement with the ex- 
act solution with v > 0.2. 

With v < 0.2, more exact results are given by a quasistatic approximation N = N~ 
(2.14) (curve i' for v = 0.2). 

The author expresses his thanks to E. B. Polyak for his aid in the computer calculations. 
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